A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
نویسندگان
چکیده
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contributions of this paper include: (1) development of a new multidelity surrogate-model-based optimization framework, which substantially improves reliability and e ciency of optimization compared to many existing methods, and (2) development of a data mining method to address the discrepancy between the lowand highdelity simulation models. A new e cient global optimization method is then proposed, referred to as multidelity Gaussian process and radial basis function-model-assisted memetic di erential evolution. Its advantages are veri ed by mathematical benchmark problems and a real-world antenna design automation problem.
منابع مشابه
Surrogate-assisted evolutionary computation: Recent advances and future challenges
Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted ...
متن کاملA Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimizat...
متن کاملMemetic algorithm using multi-surrogates for computationally expensive optimization problems
In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty'...
متن کاملEfficient Multi-Objective Synthesis for Microwave Components Based on Evolutionary Computation and Machine Learning Techniques
Multi-objective synthesis for microwave components (e.g. integrated transformer, antenna) is in high demand. Since the embedded electromagnetic (EM) simulations make these tasks very computationally expensive when using traditional multiobjective synthesis methods, efficiency improvement is very important. However, this research is almost blank. In this paper, a new method, called Gaussian Proc...
متن کاملOn Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization
Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Science
دوره 12 شماره
صفحات -
تاریخ انتشار 2016