A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems

نویسندگان

  • Bo Liu
  • Slawomir Koziel
  • Qingfu Zhang
چکیده

Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contributions of this paper include: (1) development of a new multidelity surrogate-model-based optimization framework, which substantially improves reliability and e ciency of optimization compared to many existing methods, and (2) development of a data mining method to address the discrepancy between the lowand highdelity simulation models. A new e cient global optimization method is then proposed, referred to as multidelity Gaussian process and radial basis function-model-assisted memetic di erential evolution. Its advantages are veri ed by mathematical benchmark problems and a real-world antenna design automation problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate-assisted evolutionary computation: Recent advances and future challenges

Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted ...

متن کامل

A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimizat...

متن کامل

Memetic algorithm using multi-surrogates for computationally expensive optimization problems

In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty'...

متن کامل

Efficient Multi-Objective Synthesis for Microwave Components Based on Evolutionary Computation and Machine Learning Techniques

Multi-objective synthesis for microwave components (e.g. integrated transformer, antenna) is in high demand. Since the embedded electromagnetic (EM) simulations make these tasks very computationally expensive when using traditional multiobjective synthesis methods, efficiency improvement is very important. However, this research is almost blank. In this paper, a new method, called Gaussian Proc...

متن کامل

On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Science

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016